- Lesson 1.1 - Introduction to variables
- A learning objective: Learn about variable types: categorical (nominal, ordinal), interval, ratio.
- Lesson 1.2 - Summary Statistics
- A learning objective: Frequencies, proportions, data types
- Lesson 1.3 - Visual exploration
- A learning objective: Visualize data via bar chart, pairplot (seaborn).
- Lesson 2.1 - Contigency tables
- A learning objective: create a contigency table in pandas, collapse larger groups into smaller (['baby', 'toddler', 'child', 'adolescent', 'young adult', 'adult', 'senior'] -> ['young', 'old'])
- Lesson 2.2 - Measures of Agreement
- A learning objective: Cohen's Kappa; Use statsmodels.stats.inter_rater.cohens_kappa or implement function
- Lesson 2.3 - Correlation
- A learning objective: Use Point-Biserial Correlation Coefficient and Phi Correlation Coefficient to understand relationships between one binary categorical and numerical variables and between multiple categorical binary variables respectively. Use Pearson's rank-order coefficient and Kendall's Tau for ordinal variables. Use scipy.stats.pointbiserialr, scipy.stats.pearsonr, scipy.stats.kendalltau. For Phi either create function or use sklearn.metrics.matthews_corrcoef.
- Lesson 3.1 - Chi-Square Distribution/ Pearson's Chi-Square Test
- A learning objective: Learn about the distribution, calculate critical values, perform 3 flavours of Chi-Square tests: test for independence, test for equality of properties, test of goodness of fit; use scipy.stats.chisquare and scipy.stats.chi2_contingency
- Lesson 3.2 - Fisher's Exact Test
- A learning objective: use scipy.stats.fisher_exact
- Lesson 3.3 - ANOVA
- A learning objective: use scipy.stats.f_oneway
- Lesson 4.1 - Problem description
- A learning objective: Get data from CSV, take a quick look at the data, create categories
- Lesson 4.2 - Understand and test data
- A learning objective: Test for correlation and significance, combine several groups, create visualizations
- Lesson 4.3 - Draw conclusion
- A learning objective: Observe and understand Simpson's paradox: reversal of trend in combined group vs. looking at groups individually