Skip to content

Orthogonalizer trait #150

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
May 14, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
108 changes: 108 additions & 0 deletions src/krylov/mgs.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
//! Modified Gram-Schmit orthogonalizer

use super::*;
use crate::{generate::*, inner::*, norm::Norm};

/// Iterative orthogonalizer using modified Gram-Schmit procedure
///
/// ```rust
/// # use ndarray::*;
/// # use ndarray_linalg::{krylov::*, *};
/// let mut mgs = MGS::new(3);
/// let coef = mgs.append(array![0.0, 1.0, 0.0], 1e-9).unwrap();
/// close_l2(&coef, &array![1.0], 1e-9);
///
/// let coef = mgs.append(array![1.0, 1.0, 0.0], 1e-9).unwrap();
/// close_l2(&coef, &array![1.0, 1.0], 1e-9);
///
/// // Fail if the vector is linearly dependent
/// assert!(mgs.append(array![1.0, 2.0, 0.0], 1e-9).is_err());
///
/// // You can get coefficients of dependent vector
/// if let Err(coef) = mgs.append(array![1.0, 2.0, 0.0], 1e-9) {
/// close_l2(&coef, &array![2.0, 1.0, 0.0], 1e-9);
/// }
/// ```
#[derive(Debug, Clone)]
pub struct MGS<A> {
/// Dimension of base space
dimension: usize,
/// Basis of spanned space
q: Vec<Array1<A>>,
}

impl<A: Scalar> MGS<A> {
/// Create an empty orthogonalizer
pub fn new(dimension: usize) -> Self {
Self {
dimension,
q: Vec::new(),
}
}
}

impl<A: Scalar + Lapack> Orthogonalizer for MGS<A> {
type Elem = A;

fn dim(&self) -> usize {
self.dimension
}

fn len(&self) -> usize {
self.q.len()
}

fn orthogonalize<S>(&self, a: &mut ArrayBase<S, Ix1>) -> Array1<A>
where
A: Lapack,
S: DataMut<Elem = A>,
{
assert_eq!(a.len(), self.dim());
let mut coef = Array1::zeros(self.len() + 1);
for i in 0..self.len() {
let q = &self.q[i];
let c = q.inner(&a);
azip!(mut a (&mut *a), q (q) in { *a = *a - c * q } );
coef[i] = c;
}
let nrm = a.norm_l2();
coef[self.len()] = A::from_real(nrm);
coef
}

fn append<S>(&mut self, a: ArrayBase<S, Ix1>, rtol: A::Real) -> Result<Array1<A>, Array1<A>>
where
A: Lapack,
S: Data<Elem = A>,
{
let mut a = a.into_owned();
let coef = self.orthogonalize(&mut a);
let nrm = coef[coef.len() - 1].re();
if nrm < rtol {
// Linearly dependent
return Err(coef);
}
azip!(mut a in { *a = *a / A::from_real(nrm) });
self.q.push(a);
Ok(coef)
}

fn get_q(&self) -> Q<A> {
hstack(&self.q).unwrap()
}
}

/// Online QR decomposition of vectors using modified Gram-Schmit algorithm
pub fn mgs<A, S>(
iter: impl Iterator<Item = ArrayBase<S, Ix1>>,
dim: usize,
rtol: A::Real,
strategy: Strategy,
) -> (Q<A>, R<A>)
where
A: Scalar + Lapack,
S: Data<Elem = A>,
{
let mgs = MGS::new(dim);
qr(iter, mgs, rtol, strategy)
}
134 changes: 134 additions & 0 deletions src/krylov/mod.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
//! Krylov subspace

use crate::types::*;
use ndarray::*;

mod mgs;

pub use mgs::{mgs, MGS};

/// Q-matrix
///
/// - Maybe **NOT** square
/// - Unitary for existing columns
///
pub type Q<A> = Array2<A>;

/// R-matrix
///
/// - Maybe **NOT** square
/// - Upper triangle
///
pub type R<A> = Array2<A>;

/// Trait for creating orthogonal basis from iterator of arrays
pub trait Orthogonalizer {
type Elem: Scalar;

/// Dimension of input array
fn dim(&self) -> usize;

/// Number of cached basis
fn len(&self) -> usize;

/// check if the basis spans entire space
fn is_full(&self) -> bool {
self.len() == self.dim()
}

fn is_empty(&self) -> bool {
self.len() == 0
}

/// Orthogonalize given vector using current basis
///
/// Panic
/// -------
/// - if the size of the input array mismatches to the dimension
///
fn orthogonalize<S>(&self, a: &mut ArrayBase<S, Ix1>) -> Array1<Self::Elem>
where
S: DataMut<Elem = Self::Elem>;

/// Add new vector if the residual is larger than relative tolerance
///
/// Returns
/// --------
/// Coefficients to the `i`-th Q-vector
///
/// - The size of array must be `self.len() + 1`
/// - The last element is the residual norm of input vector
///
/// Panic
/// -------
/// - if the size of the input array mismatches to the dimension
///
fn append<S>(
&mut self,
a: ArrayBase<S, Ix1>,
rtol: <Self::Elem as Scalar>::Real,
) -> Result<Array1<Self::Elem>, Array1<Self::Elem>>
where
S: DataMut<Elem = Self::Elem>;

/// Get Q-matrix of generated basis
fn get_q(&self) -> Q<Self::Elem>;
}

/// Strategy for linearly dependent vectors appearing in iterative QR decomposition
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Strategy {
/// Terminate iteration if dependent vector comes
Terminate,

/// Skip dependent vector
Skip,

/// Orthogonalize dependent vector without adding to Q,
/// i.e. R must be non-square like following:
///
/// ```text
/// x x x x x
/// 0 x x x x
/// 0 0 0 x x
/// 0 0 0 0 x
/// ```
Full,
}

/// Online QR decomposition using arbitrary orthogonalizer
pub fn qr<A, S>(
iter: impl Iterator<Item = ArrayBase<S, Ix1>>,
mut ortho: impl Orthogonalizer<Elem = A>,
rtol: A::Real,
strategy: Strategy,
) -> (Q<A>, R<A>)
where
A: Scalar + Lapack,
S: Data<Elem = A>,
{
assert_eq!(ortho.len(), 0);

let mut coefs = Vec::new();
for a in iter {
match ortho.append(a.into_owned(), rtol) {
Ok(coef) => coefs.push(coef),
Err(coef) => match strategy {
Strategy::Terminate => break,
Strategy::Skip => continue,
Strategy::Full => coefs.push(coef),
},
}
}
let n = ortho.len();
let m = coefs.len();
let mut r = Array2::zeros((n, m).f());
for j in 0..m {
for i in 0..n {
if i < coefs[j].len() {
r[(i, j)] = coefs[j][i];
}
}
}
(ortho.get_q(), r)
}
2 changes: 1 addition & 1 deletion src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -44,9 +44,9 @@ pub mod eigh;
pub mod error;
pub mod generate;
pub mod inner;
pub mod krylov;
pub mod lapack;
pub mod layout;
pub mod mgs;
pub mod norm;
pub mod operator;
pub mod opnorm;
Expand Down
Loading