Skip to content

SVD #12

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Nov 6, 2016
Merged

SVD #12

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 72 additions & 0 deletions src/binding.rs
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,20 @@ pub trait LapackBinding: Sized {
lwork: i32,
info: &mut i32);
fn _lange(norm: u8, m: i32, n: i32, a: &Vec<Self>, lda: i32, work: &mut Vec<Self>) -> Self;
fn _gesvd(jobu: u8,
jobvt: u8,
m: i32,
n: i32,
a: &mut [Self],
lda: i32,
s: &mut [Self],
u: &mut [Self],
ldu: i32,
vt: &mut [Self],
ldvt: i32,
work: &mut [Self],
lwork: i32,
info: &mut i32);
}

impl LapackBinding for f64 {
Expand Down Expand Up @@ -51,6 +65,35 @@ impl LapackBinding for f64 {
fn _lange(norm: u8, m: i32, n: i32, a: &Vec<Self>, lda: i32, work: &mut Vec<Self>) -> Self {
dlange(norm, m, n, a, lda, work)
}
fn _gesvd(jobu: u8,
jobvt: u8,
m: i32,
n: i32,
a: &mut [Self],
lda: i32,
s: &mut [Self],
u: &mut [Self],
ldu: i32,
vt: &mut [Self],
ldvt: i32,
work: &mut [Self],
lwork: i32,
info: &mut i32) {
dgesvd(jobu,
jobvt,
m,
n,
a,
lda,
s,
u,
ldu,
vt,
ldvt,
work,
lwork,
info);
}
}

impl LapackBinding for f32 {
Expand Down Expand Up @@ -80,4 +123,33 @@ impl LapackBinding for f32 {
fn _lange(norm: u8, m: i32, n: i32, a: &Vec<Self>, lda: i32, work: &mut Vec<Self>) -> Self {
slange(norm, m, n, a, lda, work)
}
fn _gesvd(jobu: u8,
jobvt: u8,
m: i32,
n: i32,
a: &mut [Self],
lda: i32,
s: &mut [Self],
u: &mut [Self],
ldu: i32,
vt: &mut [Self],
ldvt: i32,
work: &mut [Self],
lwork: i32,
info: &mut i32) {
sgesvd(jobu,
jobvt,
m,
n,
a,
lda,
s,
u,
ldu,
vt,
ldvt,
work,
lwork,
info);
}
}
23 changes: 22 additions & 1 deletion src/matrix.rs
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@

use ndarray::prelude::*;

use error::LapackError;
use scalar::LapackScalar;

pub trait Matrix: Sized {
Expand All @@ -11,7 +12,7 @@ pub trait Matrix: Sized {
fn norm_1(&self) -> Self::Scalar;
fn norm_i(&self) -> Self::Scalar;
fn norm_f(&self) -> Self::Scalar;
// fn svd(self) -> (Self, Self::Vector, Self);
fn svd(self) -> Result<(Self, Self::Vector, Self), LapackError>;
}

impl<A: LapackScalar> Matrix for Array<A, (Ix, Ix)> {
Expand Down Expand Up @@ -42,4 +43,24 @@ impl<A: LapackScalar> Matrix for Array<A, (Ix, Ix)> {
let (m, n) = self.size();
LapackScalar::norm_f(m, n, self.clone().into_raw_vec())
}
fn svd(self) -> Result<(Self, Self::Vector, Self), LapackError> {
let strides = self.strides();
let (m, n) = if strides[0] > strides[1] {
self.size()
} else {
let (n, m) = self.size();
(m, n)
};
let (u, s, vt) = try!(LapackScalar::svd(m, n, self.clone().into_raw_vec()));
let sv = Array::from_vec(s);
if strides[0] > strides[1] {
let ua = Array::from_vec(u).into_shape((n, n)).unwrap();
let va = Array::from_vec(vt).into_shape((m, m)).unwrap();
Ok((va, sv, ua))
} else {
let ua = Array::from_vec(u).into_shape((n, n)).unwrap().reversed_axes();
let va = Array::from_vec(vt).into_shape((m, m)).unwrap().reversed_axes();
Ok((ua, sv, va))
}
}
}
72 changes: 71 additions & 1 deletion src/scalar.rs
Original file line number Diff line number Diff line change
@@ -1,10 +1,29 @@

use std::cmp::min;
use std::fmt::Debug;
use ndarray::LinalgScalar;
use num_traits::float::Float;

use error::LapackError;
use binding;

pub trait LapackScalar: LinalgScalar + binding::LapackBinding {
pub trait TruncatableFloat: Float {
fn to_int(self) -> i32;
}

impl TruncatableFloat for f64 {
fn to_int(self) -> i32 {
self as i32
}
}
impl TruncatableFloat for f32 {
fn to_int(self) -> i32 {
self as i32
}
}

pub trait LapackScalar
: Debug + TruncatableFloat + LinalgScalar + binding::LapackBinding {
fn eigh(n: usize, mut a: Vec<Self>) -> Result<(Vec<Self>, Vec<Self>), LapackError> {
let mut w = vec![Self::zero(); n];
let mut work = vec![Self::zero(); 4 * n];
Expand Down Expand Up @@ -54,6 +73,57 @@ pub trait LapackScalar: LinalgScalar + binding::LapackBinding {
let mut work = Vec::<Self>::new();
Self::_lange(b'f', m as i32, n as i32, &mut a, m as i32, &mut work)
}
fn svd(n: usize,
m: usize,
mut a: Vec<Self>)
-> Result<(Vec<Self>, Vec<Self>, Vec<Self>), LapackError> {
let mut info = 0;
let n = n as i32;
let m = m as i32;
let lda = m;
let ldu = m;
let ldvt = n;
let lwmax = 1000; // XXX
let lwork = -1;
let mut u = vec![Self::zero(); (ldu * m) as usize];
let mut vt = vec![Self::zero(); (ldvt * n) as usize];
let mut s = vec![Self::zero(); n as usize];
let mut work = vec![Self::zero(); lwmax];
Self::_gesvd('A' as u8,
'A' as u8,
m,
n,
&mut a,
lda,
&mut s,
&mut u,
ldu,
&mut vt,
ldvt,
&mut work,
lwork,
&mut info); // calc optimal work
let lwork = min(lwmax as i32, work[0].to_int());
Self::_gesvd('A' as u8,
'A' as u8,
m,
n,
&mut a,
lda,
&mut s,
&mut u,
ldu,
&mut vt,
ldvt,
&mut work,
lwork,
&mut info);
if info == 0 {
Ok((u, s, vt))
} else {
Err(From::from(info))
}
}
}

impl LapackScalar for f64 {}
Expand Down
87 changes: 87 additions & 0 deletions tests/svd.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@

extern crate rand;
extern crate ndarray;
extern crate ndarray_rand;
extern crate ndarray_linalg;

use ndarray::prelude::*;
use ndarray_linalg::prelude::*;
use rand::distributions::*;
use ndarray_rand::RandomExt;

fn all_close(a: Array<f64, (Ix, Ix)>, b: Array<f64, (Ix, Ix)>) {
if !a.all_close(&b, 1.0e-7) {
panic!("\nTwo matrices are not equal:\na = \n{:?}\nb = \n{:?}\n",
a,
b);
}
}

#[test]
fn svd_square() {
let r_dist = Range::new(0., 1.);
let a = Array::<f64, _>::random((3, 3), r_dist);
let (u, s, vt) = a.clone().svd().unwrap();
let mut sm = Array::eye(3);
for i in 0..3 {
sm[(i, i)] = s[i];
}
all_close(u.dot(&sm).dot(&vt), a);
}
#[test]
fn svd_square_t() {
let r_dist = Range::new(0., 1.);
let a = Array::<f64, _>::random((3, 3), r_dist).reversed_axes();
let (u, s, vt) = a.clone().svd().unwrap();
let mut sm = Array::eye(3);
for i in 0..3 {
sm[(i, i)] = s[i];
}
all_close(u.dot(&sm).dot(&vt), a);
}

#[test]
fn svd_4x3() {
let r_dist = Range::new(0., 1.);
let a = Array::<f64, _>::random((4, 3), r_dist);
let (u, s, vt) = a.clone().svd().unwrap();
let mut sm = Array::zeros((4, 3));
for i in 0..3 {
sm[(i, i)] = s[i];
}
all_close(u.dot(&sm).dot(&vt), a);
}
#[test]
fn svd_4x3_t() {
let r_dist = Range::new(0., 1.);
let a = Array::<f64, _>::random((3, 4), r_dist).reversed_axes();
let (u, s, vt) = a.clone().svd().unwrap();
let mut sm = Array::zeros((4, 3));
for i in 0..3 {
sm[(i, i)] = s[i];
}
all_close(u.dot(&sm).dot(&vt), a);
}

#[test]
fn svd_3x4() {
let r_dist = Range::new(0., 1.);
let a = Array::<f64, _>::random((3, 4), r_dist);
let (u, s, vt) = a.clone().svd().unwrap();
let mut sm = Array::zeros((3, 4));
for i in 0..3 {
sm[(i, i)] = s[i];
}
all_close(u.dot(&sm).dot(&vt), a);
}
#[test]
fn svd_3x4_t() {
let r_dist = Range::new(0., 1.);
let a = Array::<f64, _>::random((4, 3), r_dist).reversed_axes();
let (u, s, vt) = a.clone().svd().unwrap();
let mut sm = Array::zeros((3, 4));
for i in 0..3 {
sm[(i, i)] = s[i];
}
all_close(u.dot(&sm).dot(&vt), a);
}