Closed
Description
❓ Question
I was not able to convert my torchscript iresnet model to torch-trt format.
What you have already tried
I was able to convert the resnet101 from torchvision:
model = torchvision.models.resnet101(pretrained=True)
model.eval()
model.to("cuda")
data = torch.zeros((1, 3, 112, 112)).to("cuda")
traced_model = torch.jit.trace(model, data)
trt_ts_module = torch_tensorrt.compile(traced_model,
inputs = [data],
enabled_precisions = {torch.float}, # Run with FP16)
)
And I was able to convert the iresnet101 from https://github.com/iduta/iresnet/blob/master/models/iresnet.py.
But to my own model:
import torch
from torch import nn
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes,
out_planes,
kernel_size=1,
stride=stride,
bias=False)
class IBasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None,
groups=1, base_width=64, dilation=1):
super(IBasicBlock, self).__init__()
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05,)
self.conv1 = conv3x3(inplanes, planes)
self.bn2 = nn.BatchNorm2d(planes, eps=1e-05,)
self.prelu = nn.PReLU(planes)
self.conv2 = conv3x3(planes, planes, stride)
self.bn3 = nn.BatchNorm2d(planes, eps=1e-05,)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.bn1(x)
out = self.conv1(out)
out = self.bn2(out)
out = self.prelu(out)
out = self.conv2(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
class IResNet(nn.Module):
fc_scale = 7 * 7
def __init__(self,
block, layers, dropout=0, num_features=512, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False):
super(IResNet, self).__init__()
self.fp16 = fp16
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05)
self.prelu = nn.PReLU(self.inplanes)
self.layer1 = self._make_layer(block, 64, layers[0], stride=2)
self.layer2 = self._make_layer(block,
128,
layers[1],
stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block,
256,
layers[2],
stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block,
512,
layers[3],
stride=2,
dilate=replace_stride_with_dilation[2])
self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05,)
self.dropout = nn.Dropout(p=dropout, inplace=True)
self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features)
self.features = nn.BatchNorm1d(num_features, eps=1e-05)
nn.init.constant_(self.features.weight, 1.0)
self.features.weight.requires_grad = False
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, 0, 0.1)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if zero_init_residual:
for m in self.modules():
if isinstance(m, IBasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ),
)
layers = []
layers.append(
block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.prelu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.bn2(x)
x = torch.flatten(x, 1)
x = self.dropout(x)
x = self.fc(x.float() if self.fp16 else x)
x = self.features(x)
return x
def _iresnet(arch, block, layers, pretrained, progress, **kwargs):
model = IResNet(block, layers, **kwargs)
if pretrained:
raise ValueError()
return model
def iresnet(pretrained=False, progress=True, **kwargs):
return _iresnet('iresnet', IBasicBlock, [3, 13, 30, 3], pretrained,
progress, **kwargs)
model = iresnet().to(device="cuda")
model.eval()
data = torch.zeros((1, 3, 112, 112)).to("cuda")
traced_model = torch.jit.trace(model, data)
trt_ts_module = torch_tensorrt.compile(traced_model,
inputs = [data],
enabled_precisions = {torch.float}, # Run with FP16)
)
WARNING: [Torch-TensorRT TorchScript Conversion Context] - The logger passed into createInferBuilder differs from one already provided for an existing builder, runtime, or refitter. TensorRT maintains only a single logger pointer at any given time, so the existing value, which can be retrieved with getLogger(), will be used instead. In order to use a new logger, first destroy all existing builder, runner or refitter objects.
ERROR: [Torch-TensorRT] - 2: [pointWiseNode.cpp::computeOutputExtents::17] Error Code 2: Internal Error (Assertion nbDims == inputs[i]->extent.nbDims failed.)
ERROR: [Torch-TensorRT] - 2: [pointWiseNode.cpp::computeOutputExtents::17] Error Code 2: Internal Error (Assertion nbDims == inputs[i]->extent.nbDims failed.)
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-41-9f8c12fc29e3> in <module>
7 traced_model = torch.jit.trace(model, data)
8
----> 9 trt_ts_module = torch_tensorrt.compile(traced_model,
10 inputs = [data],
11 # inputs = [torch_tensorrt.Input( # Specify input object with shape and dtype
/opt/conda/lib/python3.8/site-packages/torch_tensorrt/_compile.py in compile(module, ir, inputs, enabled_precisions, **kwargs)
95 )
96 ts_mod = torch.jit.script(module)
---> 97 return torch_tensorrt.ts.compile(ts_mod, inputs=inputs, enabled_precisions=enabled_precisions, **kwargs)
98 elif target_ir == _IRType.fx:
99 raise RuntimeError("fx is currently not supported")
/opt/conda/lib/python3.8/site-packages/torch_tensorrt/ts/_compiler.py in compile(module, inputs, device, disable_tf32, sparse_weights, enabled_precisions, refit, debug, strict_types, capability, num_min_timing_iters, num_avg_timing_iters, workspace_size, max_batch_size, calibrator, truncate_long_and_double, require_full_compilation, min_block_size, torch_executed_ops, torch_executed_modules)
117 }
118
--> 119 compiled_cpp_mod = _C.compile_graph(module._c, _parse_compile_spec(spec))
120 compiled_module = torch.jit._recursive.wrap_cpp_module(compiled_cpp_mod)
121 return compiled_module
RuntimeError: [Error thrown at core/conversion/converters/impl/batch_norm.cpp:74] Expected orig_shape.nbDims > 2 to be true but got false
Unable to create batch normalization layer from node: %input.7 : Tensor = aten::batch_norm(%input.5, %self.layer1.0.bn1.weight, %self.layer1.0.bn1.bias, %self.layer1.0.bn1.running_mean, %self.layer1.0.bn1.running_var, %11, %5, %6, %12), scope: __module.layer1/__module.layer1.0/__module.layer1.0.bn1 # /opt/conda/lib/python3.8/site-packages/torch/nn/functional.py:2381:0
If I used a scripted model instead of a traced one:
scripted_model = torch.jit.script(model, data)
In [4]: trt_ts_module = torch_tensorrt.compile(scripted_model,
...: inputs = [data],
...: enabled_precisions = {torch.float}, # Run with FP16)
...: )
ERROR: [Torch-TensorRT TorchScript Conversion Context] - 2: [pointWiseNode.cpp::computeOutputExtents::17] Error Code 2: Internal Error (Assertion nbDims == inputs[i]->extent.nbDims failed.)
ERROR: [Torch-TensorRT TorchScript Conversion Context] - 2: [pointWiseNode.cpp::computeOutputExtents::17] Error Code 2: Internal Error (Assertion nbDims == inputs[i]->extent.nbDims failed.)
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-4-2a20adf26c71> in <module>
----> 1 trt_ts_module = torch_tensorrt.compile(scripted_model,
2 inputs = [data],
3 enabled_precisions = {torch.float}, # Run with FP16)
4 )
/opt/conda/lib/python3.8/site-packages/torch_tensorrt/_compile.py in compile(module, ir, inputs, enabled_precisions, **kwargs)
95 )
96 # ts_mod = torch.jit.script(module)
---> 97 return torch_tensorrt.ts.compile(ts_mod, inputs=inputs, enabled_precisions=enabled_precisions, **kwargs)
98 elif target_ir == _IRType.fx:
99 raise RuntimeError("fx is currently not supported")
/opt/conda/lib/python3.8/site-packages/torch_tensorrt/ts/_compiler.py in compile(module, inputs, device, disable_tf32, sparse_weights, enabled_precisions, refit, debug, strict_types, capability, num_min_timing_iters, num_avg_timing_iters, workspace_size, max_batch_size, calibrator, truncate_long_and_double, require_full_compilation, min_block_size, torch_executed_ops, torch_executed_modules)
117 }
118
--> 119 compiled_cpp_mod = _C.compile_graph(module._c, _parse_compile_spec(spec))
120 compiled_module = torch.jit._recursive.wrap_cpp_module(compiled_cpp_mod)
121 return compiled_module
RuntimeError: [Error thrown at core/conversion/converters/impl/conv_deconv.cpp:115] Expected orig_dims.nbDims > 2 to be true but got false
Unable to create convolution layer from node: %10834 : Tensor = aten::_convolution(%x.13, %self.layer1.0.downsample.0.weight, %self.conv1.bias, %9502, %9504, %9478, %10832, %10833, %15, %10832, %10832, %10832, %10832)
Environment
Build information about Torch-TensorRT can be found by turning on debug messages
- NGC PyTorch container 21.11-py3