Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
# install pandas==2.1.1 pyarrow==13.0.0 s3fs
import pandas as pd
pd.read_parquet("s3://my-bucket/data=2000-01-01/") # Raises FileNotFoundError or OSError
Issue Description
There is a very brittle interaction between the Pandas version and Pyarrow version when reading a parquet dataset from S3. Here is a matrix of tests:
Pandas/Pyarrow | 8.0.0 | 9.0.0 | 10.0.1 | 11.0.0 | 12.0.1 | 13.0.0 |
---|---|---|---|---|---|---|
1.5.3 | FileNotFoundError | FileNotFoundError | FileNotFoundError | FileNotFoundError | FileNotFoundError | FileNotFoundError |
2.0.3 | FileNotFoundError | FileNotFoundError | FileNotFoundError | FileNotFoundError | FileNotFoundError | FileNotFoundError |
2.1.1 | OSError | OK | OSError | OSError | OSError | OSError |
Expected Behavior
I expect latest pandas to work with latest pyarrow and s3fs.
Installed Versions
Pandas 2.1.1 and Pyarrow 13.0.0 (NOT WORKING EXAMPLE)
commit : e86ed377639948c64c429059127bcf5b359ab6be
python : 3.10.12.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.0-82-generic
Version : #91~20.04.1-Ubuntu SMP Fri Aug 18 16:24:39 UTC 2023
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : pt_BR.UTF-8
pandas : 2.1.1
numpy : 1.26.0
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 65.5.0
pip : 23.0.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader : None
bs4 : None
bottleneck : None
dataframe-api-compat: None
fastparquet : None
fsspec : 2023.9.1
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 13.0.0
pyreadstat : None
pyxlsb : None
s3fs : 2023.9.1
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None
Pandas 2.1.1 and Pyarrow 9.0.0 (WORKING EXAMPLE)
commit : e86ed37
python : 3.10.12.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.0-82-generic
Version : #91~20.04.1-Ubuntu SMP Fri Aug 18 16:24:39 UTC 2023
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : pt_BR.UTF-8
pandas : 2.1.1
numpy : 1.26.0
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 65.5.0
pip : 23.0.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader : None
bs4 : None
bottleneck : None
dataframe-api-compat: None
fastparquet : None
fsspec : 2023.9.1
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 9.0.0
pyreadstat : None
pyxlsb : None
s3fs : 2023.9.1
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None