Skip to content

PERF: Severe performance hit on DataFrame.sum with multi index and 'skipna=False' #37976

Closed
@miccoli

Description

@miccoli

Series.sum(..., skipna=False) and DataFrame.sum(..., skipna=False) are very slow on a MultiIndex,
if compared to the same method called with (..., skipna=True)


  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • (optional) I have confirmed this bug exists on the master branch of pandas.


Code Sample, a copy-pastable example

import pandas as pd
import numpy as np

dims = (1000, 100, 10)

# make random data
rg = np.random.default_rng(0)
x = rg.random(dims)

# construct dataframe with multindex
idx = pd.MultiIndex.from_product(map(range, dims), names=["i0", "i1", "i2"])
df = pd.Series(data=x.ravel(), index=idx, name="x")

# comupute sum over "i2" level in pandas
s1 = df.sum(level=["i0", "i1"], skipna=False)
s2 = df.sum(level=["i0", "i1"], skipna=True)

# compute sum over "axis=2" in numpy
s_ref = x.sum(axis=2)

# check results
s_ref_norm = np.linalg.norm(s_ref)
for s in (s1, s2):
    print(np.linalg.norm(s.to_numpy().reshape(s_ref.shape) - s_ref) / s_ref_norm)

Problem description

The computation of s1 = df.sum(level=["i0", "i1"], skipna=False) takes forever in the sample above:

In [2]: %timeit df.sum(level=["i0", "i1"], skipna=False)
8.44 s ± 47.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [3]: %timeit df.sum(level=["i0", "i1"], skipna=True)
52.1 ms ± 266 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [4]: %timeit x.sum(axis=2)
1.09 ms ± 13.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Here we see a severe performance hit (8.61 s vs 0.05 s) for the very same DataFrame.sum if skipna=False.
Maybe this is related to #16788 and #37622

The performance of df.sum(level=["i0", "i1"], skipna=True) with respect to baseline numpy is not great, but I think this is not an issue here.

Results are correct, fortunately. Curiously the slow result (skipna=False) is identical with the reference numpy sum, while the faster result (skipna=True) is within ±2 ULP, but of course this is not a concern.

Almost the same results hold if we use a DataFrame instead of a Series

Output of pd.show_versions()

INSTALLED VERSIONS

commit : 67a3d42
python : 3.8.2.final.0
python-bits : 64
OS : Darwin
OS-release : 19.6.0
Version : Darwin Kernel Version 19.6.0: Thu Oct 29 22:56:45 PDT 2020; root:xnu-6153.141.2.2~1/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8

pandas : 1.1.4
numpy : 1.19.4
pytz : 2020.1
dateutil : 2.8.1
pip : 20.2.4
setuptools : 49.6.0
Cython : None
pytest : 6.0.1
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : 1.0.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.17.0
pandas_datareader: None
bs4 : None
bottleneck : 1.3.2
fsspec : 0.8.0
fastparquet : None
gcsfs : None
matplotlib : 3.3.2
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.3
pandas_gbq : None
pyarrow : 1.0.1
pytables : None
pyxlsb : None
s3fs : 0.5.0
scipy : 1.5.3
sqlalchemy : None
tables : 3.6.1
tabulate : 0.8.7
xarray : 0.16.0
xlrd : 1.2.0
xlwt : None
numba : 0.51.1

Metadata

Metadata

Assignees

No one assigned

    Labels

    Duplicate ReportDuplicate issue or pull requestGroupbyPerformanceMemory or execution speed performance

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions