Closed
Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
Get the column as a series and modify inplace with +=
:
In [1]: import pandas as pd
...: df = pd.DataFrame({"col": [1 ,2 ,3, 4]})
...: s = df["col"]
...: s += 1
...: print(s)
...: print(df["col"])
...: print(df[["col"]])
0 2
1 3
2 4
3 5
Name: col, dtype: int64
0 2
1 3
2 4
3 5
Name: col, dtype: int64
col
0 1
1 2
2 3
3 4
Modify the column directly with +=
:
In [2]: import pandas as pd
...: df = pd.DataFrame({"col": [1 ,2 ,3, 4]})
...: df["col"] += 1
...: print(df["col"])
...: print(df[["col"]])
0 2
1 3
2 4
3 5
Name: col, dtype: int64
col
0 2
1 3
2 4
3 5
Problem description
The data in the column should be consistent whether accessed as df["col"]
or df[["col"]]
.
Expected Output
Either +=
modifies the values in the dataframe column or it doesn't but df["col"]
and df[["col"]]
should show the same values.
Output of pd.show_versions()
In [13]: pd.show_versions()
INSTALLED VERSIONS
------------------
commit : db08276bc116c438d3fdee492026f8223584c477
python : 3.8.5.final.0
python-bits : 64
OS : Darwin
OS-release : 19.6.0
Version : Darwin Kernel Version 19.6.0: Thu Jun 18 20:49:00 PDT 2020; root:xnu-6153.141.1~1/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.1.3
numpy : 1.18.5
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 47.1.0
Cython : 0.29.21
pytest : 5.4.3
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.5.2
html5lib : None
pymysql : 0.10.1
psycopg2 : 2.8.6 (dt dec pq3 ext lo64)
jinja2 : 2.11.2
IPython : 7.14.0
pandas_datareader: None
bs4 : None
bottleneck : 1.3.2
fsspec : 0.8.3
fastparquet : None
gcsfs : None
matplotlib : 3.3.2
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.5
pandas_gbq : None
pyarrow : 1.0.1
pytables : None
pyxlsb : None
s3fs : 0.4.2
scipy : 1.4.1
sqlalchemy : 1.3.19
tables : 3.6.1
tabulate : 0.8.7
xarray : None
xlrd : None
xlwt : None
numba : None
For master branch:
In [1]: import pandas as pd; pd.show_versions()
INSTALLED VERSIONS
------------------
commit : 9787744272c13a1dcbbcdfc7daaae8cc73ac78a3
python : 3.8.5.final.0
...
pandas : 1.2.0.dev0+684.g978774427
...