Closed

Description
wes, how would you feel about adding something like the following as
a Dataframe method? especially with method chaining I would find this
useful. Will add handling for datatypes and so on.
In [32]: from pandas.util.testing import makeCustomDataframe as mkdf
In [33]: def grep(df,col,pat):
...: vals=df[col]
...: return df.ix[[bool(re.search(pat,unicode(x))) for x in vals]]
In [34]: df=mkdf(20,2)
...: print df
C0 C_l0_g0 C_l0_g1 \
R0
R_l0_g0 R0C0 R0C1
R_l0_g1 R1C0 R1C1
R_l0_g10 R2C0 R2C1
R_l0_g11 R3C0 R3C1
R_l0_g12 R4C0 R4C1
R_l0_g13 R5C0 R5C1
R_l0_g14 R6C0 R6C1
R_l0_g15 R7C0 R7C1
R_l0_g16 R8C0 R8C1
R_l0_g17 R9C0 R9C1
R_l0_g18 R10C0 R10C1
R_l0_g19 R11C0 R11C1
R_l0_g2 R12C0 R12C1
R_l0_g20 R13C0 R13C1
R_l0_g3 R14C0 R14C1
R_l0_g4 R15C0 R15C1
R_l0_g5 R16C0 R16C1
R_l0_g6 R17C0 R17C1
R_l0_g7 R18C0 R18C1
R_l0_g8 R19C0 R19C1
In [35]: grep(df,"C_l0_g0","R.*6")
Out[35]:
C0 C_l0_g0 C_l0_g1 \
R0
R_l0_g14 R6C0 R6C1
R_l0_g5 R16C0 R16C1