Skip to content

[mlir][linalg] Add transform operator for Winograd Conv2D algorithm #96182

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Jul 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -2646,4 +2646,55 @@ def MapCopyToThreadsOp :
}];
}

//===----------------------------------------------------------------------===//
// Winograd Conv2D
//===----------------------------------------------------------------------===//

def WinogradConv2DOp : Op<Transform_Dialect,
"structured.winograd_conv2d",
[FunctionalStyleTransformOpTrait, MemoryEffectsOpInterface,
TransformOpInterface, TransformEachOpTrait,
ReportTrackingListenerFailuresOpTrait]> {
let description = [{
Winograd Conv2D algorithm will convert linalg Conv2D operation into batched
matrix multiply. Before the matrix multiply, it will convert filter and
input into a format suitable for batched matrix multiply. After the matrix
multiply, it will convert output to the final result tensor.

The algorithm F(m x m, r x r) is

Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A

The size of output Y is m x m. The size of filter g is r x r. The size of
input d is (m + r - 1) x (m + r - 1). A^T, A, G^T, G, B^T, and B are
transformation matrices.

#### Return modes:

This operation produces a silenceable failure if `target` is unsupported.
Otherwise, the operation succeeds and returns a handle of the sequence that
replaces the original convolution.
}];

let arguments = (ins TransformHandleTypeInterface:$target,
I64Attr:$m,
I64Attr:$r);
let results = (outs TransformHandleTypeInterface:$transformed);

let assemblyFormat =
"$target attr-dict `:` functional-type($target, results)";

let builders = [
OpBuilder<(ins "Value":$target)>
];

let extraClassDeclaration = [{
::mlir::DiagnosedSilenceableFailure applyToOne(
::mlir::transform::TransformRewriter &rewriter,
::mlir::linalg::LinalgOp target,
::mlir::transform::ApplyToEachResultList &results,
::mlir::transform::TransformState &state);
}];
}

#endif // LINALG_TRANSFORM_OPS
7 changes: 7 additions & 0 deletions mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
Original file line number Diff line number Diff line change
Expand Up @@ -1332,6 +1332,13 @@ FailureOr<Operation *> transposeBatchMatmul(RewriterBase &rewriter,
linalg::BatchMatmulOp op,
bool transposeLHS = true);

/// Convert linalg.conv_2d_nhwc_fhwc to Winograd Conv2D algorithm
/// F(m x m, r x r). m is the dimension size of output and r is the dimension
/// size of filter.
FailureOr<Operation *> winogradConv2D(RewriterBase &rewriter,
linalg::Conv2DNhwcFhwcOp op, int64_t m,
int64_t r);

//===----------------------------------------------------------------------===//
// Rewrite patterns wrapping transformations.
// TODO: every single such pattern should be a close to noop wrapper around a
Expand Down
31 changes: 31 additions & 0 deletions mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3711,6 +3711,37 @@ DiagnosedSilenceableFailure transform::MapCopyToThreadsOp::applyToOne(
return DiagnosedSilenceableFailure::success();
}

//===----------------------------------------------------------------------===//
// WinogradConv2DOp
//===----------------------------------------------------------------------===//

DiagnosedSilenceableFailure transform::WinogradConv2DOp::applyToOne(
transform::TransformRewriter &rewriter, linalg::LinalgOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
rewriter.setInsertionPoint(target);
FailureOr<Operation *> maybeTransformed = failure();
bool supported = TypeSwitch<Operation *, bool>(target)
.Case([&](linalg::Conv2DNhwcFhwcOp op) {
maybeTransformed =
winogradConv2D(rewriter, op, getM(), getR());
return true;
})
.Default([&](Operation *op) { return false; });

if (!supported) {
return emitSilenceableError()
<< "this operation is not supported to convert to Winograd Conv2D";
}

if (supported && failed(maybeTransformed)) {
return emitSilenceableError() << "apply Winograd Conv2D failed";
}

results.push_back(*maybeTransformed);
return DiagnosedSilenceableFailure::success();
}

#include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOpsEnums.cpp.inc"

#define GET_OP_CLASSES
Expand Down
9 changes: 8 additions & 1 deletion mlir/lib/Dialect/Linalg/Transforms/WinogradConv2D.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,9 @@
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/Support/MathExtras.h"

namespace mlir {
Expand Down Expand Up @@ -156,7 +158,6 @@ winogradConv2DHelper(RewriterBase &rewriter, linalg::Conv2DNhwcFhwcOp convOp,
auto filterType = cast<ShapedType>(filter.getType());
auto outputType = cast<ShapedType>(output.getType());

// TODO: Should we support dynamic shapes?
if (!inputType.hasStaticShape())
return rewriter.notifyMatchFailure(convOp,
"expected a static shape for the input");
Expand Down Expand Up @@ -316,6 +317,12 @@ class WinogradConv2DNhwcFhwc final
} // end anonymous namespace

//===----------------------------------------------------------------------===//
FailureOr<Operation *> winogradConv2D(RewriterBase &rewriter,
linalg::Conv2DNhwcFhwcOp op, int64_t m,
int64_t r) {
return winogradConv2DHelper(rewriter, op, m, r);
}

void populateWinogradConv2DPatterns(RewritePatternSet &patterns, int64_t m,
int64_t r) {
MLIRContext *context = patterns.getContext();
Expand Down
76 changes: 76 additions & 0 deletions mlir/test/Dialect/Linalg/transform-winograd-conv2d.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
// RUN: mlir-opt %s -transform-interpreter -canonicalize --split-input-file -verify-diagnostics| FileCheck %s

func.func @conv2d(%arg0: tensor<2x10x10x5xf32>, %arg1: tensor<2x3x3x5xf32>, %arg2: tensor<1xf32>, %arg3: tensor<2x8x8x2xf32>) -> tensor<2x8x8x2xf32> {
%0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<2x10x10x5xf32>, tensor<2x3x3x5xf32>) outs(%arg3 : tensor<2x8x8x2xf32>) -> tensor<2x8x8x2xf32>
return %0 : tensor<2x8x8x2xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.conv_2d_nhwc_fhwc"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.winograd_conv2d %0 { m = 4, r = 3 } : (!transform.any_op) -> (!transform.any_op)
transform.yield
}
}

// CHECK-LABEL: func.func @conv2d
// CHECK: linalg.winograd_filter_transform m(4) r(3)
// CHECK: linalg.winograd_input_transform m(4) r(3)
// CHECK: linalg.batch_matmul
// CHECK: linalg.winograd_output_transform m(4) r(3)

// -----

func.func @conv2d_unaligned(%arg0: tensor<2x11x11x5xf32>, %arg1: tensor<2x3x3x5xf32>, %arg2: tensor<1xf32>, %arg3: tensor<2x9x9x2xf32>) -> tensor<2x9x9x2xf32> {
%0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<2x11x11x5xf32>, tensor<2x3x3x5xf32>) outs(%arg3 : tensor<2x9x9x2xf32>) -> tensor<2x9x9x2xf32>
return %0 : tensor<2x9x9x2xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.conv_2d_nhwc_fhwc"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.winograd_conv2d %0 { m = 4, r = 3 } : (!transform.any_op) -> (!transform.any_op)
transform.yield
}
}

// CHECK-LABEL: func.func @conv2d_unaligned
// CHECK: linalg.winograd_filter_transform m(4) r(3)
// CHECK: tensor.pad
// CHECK-SAME: low[0, 0, 0, 0] high[0, 3, 3, 0]
// CHECK: linalg.winograd_input_transform m(4) r(3)
// CHECK: tensor.pad
// CHECK-SAME: low[0, 0, 0, 0] high[0, 3, 3, 0]
// CHECK: linalg.winograd_output_transform m(4) r(3)

// -----

func.func @conv2d_unsupported(%arg0: tensor<2x10x10x5xf32>, %arg1: tensor<3x3x5x2xf32>, %arg2: tensor<1xf32>, %arg3: tensor<2x8x8x2xf32>) -> tensor<2x8x8x2xf32> {
%0 = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<2x10x10x5xf32>, tensor<3x3x5x2xf32>) outs(%arg3 : tensor<2x8x8x2xf32>) -> tensor<2x8x8x2xf32>
return %0 : tensor<2x8x8x2xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.conv_2d_nhwc_hwcf"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @+1 {{this operation is not supported to convert to Winograd Conv2D}}
%1 = transform.structured.winograd_conv2d %0 { m = 4, r = 3 } : (!transform.any_op) -> (!transform.any_op)
transform.yield
}
}

// -----

func.func @conv2d(%arg0: tensor<2x?x?x5xf32>, %arg1: tensor<2x3x3x5xf32>, %arg2: tensor<1xf32>, %arg3: tensor<2x?x?x2xf32>) -> tensor<2x?x?x2xf32> {
%0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<2x?x?x5xf32>, tensor<2x3x3x5xf32>) outs(%arg3 : tensor<2x?x?x2xf32>) -> tensor<2x?x?x2xf32>
return %0 : tensor<2x?x?x2xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.conv_2d_nhwc_fhwc"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @+1 {{apply Winograd Conv2D failed}}
%1 = transform.structured.winograd_conv2d %0 { m = 4, r = 3 } : (!transform.any_op) -> (!transform.any_op)
transform.yield
}
}