Skip to content

[MLIR] TosaToLinalg: Prefer to emit identity maps #123295

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -882,8 +882,14 @@ emitElementwiseComputation(ConversionPatternRewriter &rewriter, Location loc,
auto shape = cast<ShapedType>(operand.getType()).getShape();
SmallVector<AffineExpr> affineExprs;
for (auto it : llvm::enumerate(shape)) {
auto affineExpr = it.value() == 1 ? rewriter.getAffineConstantExpr(0)
: rewriter.getAffineDimExpr(it.index());
// Prefer producting identity maps whenever possible (i.e. no broadcasting
// needed) because some transforms (like reshape folding)
// do not support affine constant exprs.
bool requiresBroadcast =
(it.value() == 1 && resultType.getDimSize(it.index()) != 1);
auto affineExpr = requiresBroadcast
? rewriter.getAffineConstantExpr(0)
: rewriter.getAffineDimExpr(it.index());
affineExprs.push_back(affineExpr);
}
return AffineMap::get(rank, 0, affineExprs, rewriter.getContext());
Expand Down
32 changes: 25 additions & 7 deletions mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -100,16 +100,15 @@ func.func @test_add_0d(%arg0: tensor<f32>, %arg1: tensor<f32>) -> tensor<f32> {

// -----

// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (d0, 0)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (0, 0)>
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (0, d1)>

// CHECK-LABEL: func.func @test_add_0d_broadcast(
// CHECK-SAME: %[[ARG0:.*]]: tensor<2x1xf32>,
// CHECK-SAME: %[[ARG1:.*]]: tensor<f32>) -> tensor<2x1xf32> {
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[ARG1]] [] output_shape [1, 1] : tensor<f32> into tensor<1x1xf32>
// CHECK: %[[EMPTY_TENSOR:.*]] = tensor.empty() : tensor<2x1xf32>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0]], %[[EXPANDED]] : tensor<2x1xf32>, tensor<1x1xf32>) outs(%[[EMPTY_TENSOR]] : tensor<2x1xf32>) {
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP0]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0]], %[[EXPANDED]] : tensor<2x1xf32>, tensor<1x1xf32>) outs(%[[EMPTY_TENSOR]] : tensor<2x1xf32>) {
// CHECK: ^bb0(%[[IN0:.*]]: f32, %[[IN1:.*]]: f32, %[[OUT:.*]]: f32):
// CHECK: %[[ADD:.*]] = arith.addf %[[IN0]], %[[IN1]] : f32
// CHECK: linalg.yield %[[ADD]] : f32
Expand Down Expand Up @@ -253,6 +252,26 @@ func.func @test_add_1d_broadcast_static_to_static(%arg0: tensor<1xf32>, %arg1: t

// -----

// CHECK: #[[$MAP:.+]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @test_add_1d_matching_no_broadcast
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
func.func @test_add_1d_matching_no_broadcast(%arg0: tensor<1xf32>, %arg1: tensor<1xf32>) -> tensor<1xf32> {

// CHECK: %[[VAL_0:.*]] = tensor.empty() : tensor<1xf32>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP]], #[[$MAP]], #[[$MAP]]], iterator_types = ["parallel"]} ins(%[[ARG0]], %[[ARG1]] : tensor<1xf32>, tensor<1xf32>) outs(%[[VAL_0]] : tensor<1xf32>) {
// CHECK: ^bb0(%[[VAL_1:.*]]: f32, %[[VAL_2:.*]]: f32, %[[VAL_3:.*]]: f32):
// CHECK: %[[VAL_4:.*]] = arith.addf %[[VAL_1]], %[[VAL_2]] : f32
// CHECK: linalg.yield %[[VAL_4]] : f32
// CHECK: } -> tensor<1xf32>
%0 = tosa.add %arg0, %arg1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>

// CHECK: return %[[RESULT]] : tensor<1xf32>
return %0 : tensor<1xf32>
}

// -----

// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @test_add_1d_matching_static
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
Expand Down Expand Up @@ -1969,13 +1988,12 @@ func.func @test_dynamic_fft2d(%arg0: tensor<?x?x?xf32>, %arg1: tensor<?x?x?xf32>

// -----

// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (0)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (d0)>
// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (d0)>

// CHECK-LABEL: func.func @test_cast_fp32_i64(
// CHECK-SAME: %[[ARG0:.*]]: tensor<1xf32>) -> tensor<1xi64> {
// CHECK: %[[EMPTY_TENSOR:.*]] = tensor.empty() : tensor<1xi64>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<1xf32>) outs(%[[EMPTY_TENSOR]] : tensor<1xi64>) {
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<1xf32>) outs(%[[EMPTY_TENSOR]] : tensor<1xi64>) {
// CHECK: ^bb0(%[[IN:.*]]: f32, %[[OUT:.*]]: i64):
// CHECK: %[[ROUND_EVEN:.*]] = math.roundeven %[[IN]] : f32
// CHECK: %[[FP_INT_MIN:.*]] = arith.constant -9.22337203E+18 : f32
Expand Down
Loading