Skip to content

[mlir][Linalg] Fix linalg.generic iteration domain collapse for dynamic dims #118208

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Feb 19, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 19 additions & 12 deletions mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1548,10 +1548,9 @@ static Value getCollapsedOpOperand(Location loc, LinalgOp op,

/// Modify the `linalg.index` operations in the original generic op, to its
/// value in the collapsed operation.
void generateCollapsedIndexingRegion(Location loc, Block *block,
const CollapsingInfo &collapsingInfo,
ValueRange loopRange,
RewriterBase &rewriter) {
static void generateCollapsedIndexingRegion(
Location loc, Block *block, const CollapsingInfo &collapsingInfo,
ArrayRef<OpFoldResult> loopRange, RewriterBase &rewriter) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPointToStart(block);

Expand All @@ -1572,10 +1571,12 @@ void generateCollapsedIndexingRegion(Location loc, Block *block,
Value newIndexVal =
rewriter.create<linalg::IndexOp>(loc, foldedDims.index());
for (auto dim : llvm::reverse(foldedDimsRef.drop_front())) {
Value loopDim =
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange[dim]);
indexReplacementVals[dim] =
rewriter.create<arith::RemSIOp>(loc, newIndexVal, loopRange[dim]);
rewriter.createOrFold<arith::RemSIOp>(loc, newIndexVal, loopDim);
newIndexVal =
rewriter.create<arith::DivSIOp>(loc, newIndexVal, loopRange[dim]);
rewriter.createOrFold<arith::DivSIOp>(loc, newIndexVal, loopDim);
}
indexReplacementVals[foldedDims.value().front()] = newIndexVal;
}
Expand Down Expand Up @@ -1722,14 +1723,13 @@ FailureOr<CollapseResult> mlir::linalg::collapseOpIterationDims(
LinalgOp collapsedOp = createCollapsedOp(op, collapsingInfo, rewriter);

Location loc = op->getLoc();
SmallVector<OpFoldResult> loopBound =
llvm::map_to_vector(loopRanges, [](Range range) { return range.size; });

if (collapsedOp.hasIndexSemantics()) {
// Collect the loop range of the generic op.
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(collapsedOp);
SmallVector<Value> loopBound =
llvm::map_to_vector(loopRanges, [&](Range range) {
return getValueOrCreateConstantIndexOp(rewriter, loc, range.size);
});
generateCollapsedIndexingRegion(loc, &collapsedOp->getRegion(0).front(),
collapsingInfo, loopBound, rewriter);
}
Expand All @@ -1747,15 +1747,22 @@ FailureOr<CollapseResult> mlir::linalg::collapseOpIterationDims(
op.getIndexingMapMatchingResult(originalResult.value());
SmallVector<ReassociationIndices> reassociation =
getOperandReassociation(indexingMap, collapsingInfo);
assert(
indexingMap.isProjectedPermutation() &&
"Expected indexing map to be a projected permutation for collapsing");
SmallVector<OpFoldResult> resultShape =
applyPermutationMap(indexingMap, ArrayRef(loopBound));
Value result;
if (isa<MemRefType>(collapsedOpResult.getType())) {
MemRefType expandShapeResultType = MemRefType::get(
originalResultType.getShape(), originalResultType.getElementType());
result = rewriter.create<memref::ExpandShapeOp>(
loc, expandShapeResultType, collapsedOpResult, reassociation);
loc, expandShapeResultType, collapsedOpResult, reassociation,
resultShape);
} else {
result = rewriter.create<tensor::ExpandShapeOp>(
loc, originalResultType, collapsedOpResult, reassociation);
loc, originalResultType, collapsedOpResult, reassociation,
resultShape);
}
results.push_back(result);
} else {
Expand Down
63 changes: 45 additions & 18 deletions mlir/test/Dialect/Linalg/fuse-with-reshape-by-collapsing.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -225,6 +225,38 @@ func.func @fuse_by_collapsing_dynamic(%arg0 : tensor<?x?x?x?x?xi32>,

// -----

#map0 = affine_map<(d0, d1) -> (d0, d1)>
func.func @fuse_by_collapsing_dynamic_2(%arg0 : tensor<?xf32>, %sz0: index, %sz1: index) -> tensor<?x?xf32> {
%0 = tensor.expand_shape %arg0 [[0, 1]] output_shape [%sz0, %sz1] : tensor<?xf32> into tensor<?x?xf32>
%init = tensor.empty(%sz1, %sz0) : tensor<?x?xf32>
%1 = linalg.generic {
indexing_maps = [#map0, #map0],
iterator_types = ["parallel", "parallel"]}
ins(%0 : tensor<?x?xf32>)
outs(%init : tensor<?x?xf32>) {
^bb0(%b0 : f32, %b1 : f32):
%out = arith.negf %b0 : f32
linalg.yield %out : f32
} -> tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}

// CHECK-LABEL: func @fuse_by_collapsing_dynamic_2
// CHECK-SAME: %[[ARG0:.+]]: tensor<?xf32>
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[ARG0]]
// CHECK-DAG: %[[DIM0:.+]] = tensor.dim %[[EXPANDED]], %[[C0]]
// CHECK-DAG: %[[DIM1:.+]] = tensor.dim %[[EXPANDED]], %[[C1]]
// CHECK: %[[OUT:.+]] = linalg.generic
// CHECK-SAME: ins(%[[ARG0]] : tensor<?xf32>)
// CHECK-SAME: outs(%{{.*}} : tensor<?xf32>)
// CHECK: %[[EXPANDED_1:.+]] = tensor.expand_shape %[[OUT]]
// CHECK-SAME: output_shape [%[[DIM0]], %[[DIM1]]]
// CHECK: return %[[EXPANDED_1]]

// -----

#map0 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d3)>
func.func @fuse_reductions(%arg0 : tensor<2x?x5xf32>, %arg1 : tensor<2x5xf32>, %sz0: index) -> tensor<2x5xf32> {
Expand Down Expand Up @@ -425,10 +457,11 @@ func.func @fuse_only_one_reassociation(%arg0 : tensor<?x?xf32>, %arg1 : tensor<4
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK: func @fuse_only_one_reassociation
// CHECK-SAME: (%[[ARG0:.+]]: tensor<?x?xf32>, %[[ARG1:.+]]: tensor<4x?x?x8xf32>, %[[SZ0:.+]]: index, %[[SZ1:.+]]: index)
// CHECK-DAG: %[[C8:.*]] = arith.constant 8 : index
// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[EXPAND_ARG0:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1], [2, 3]{{\]}} output_shape [%[[SZ0]], 4, %[[SZ1]], 8]
// CHECK-DAG: %[[DIM:.+]] = tensor.dim %[[EXPAND_ARG0]], %[[C0]] : tensor<?x4x?x8xf32>
// CHECK-DAG: %[[DIM_2:.+]] = tensor.dim %[[EXPAND_ARG0]], %[[C2]] : tensor<?x4x?x8xf32>
// CHECK-DAG: %[[COLLAPSE_ARG0:.+]] = tensor.collapse_shape %[[EXPAND_ARG0]] {{\[}}[0], [1], [2, 3]{{\]}}
// CHECK-DAG: %[[COLLAPSE_ARG1_0:.+]] = tensor.collapse_shape %[[ARG1]] {{\[}}[0], [1], [2, 3]{{\]}}
// CHECK-DAG: %[[COLLAPSE_ARG1_1:.+]] = tensor.collapse_shape %[[ARG1]] {{\[}}[0], [1], [2, 3]{{\]}}
Expand All @@ -437,10 +470,7 @@ func.func @fuse_only_one_reassociation(%arg0 : tensor<?x?xf32>, %arg1 : tensor<4
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel"]
// CHECK-SAME: ins(%[[COLLAPSE_ARG0]], %[[COLLAPSE_ARG1_0]] :
// CHECK-SAME: outs(%[[COLLAPSE_ARG1_1]] :
// CHECK: %[[DIM:.+]] = tensor.dim %[[GENERIC]], %[[C1]] : tensor<4x?x?xf32>
// CHECK: %[[DIM_2:.+]] = tensor.dim %[[GENERIC]], %[[C2]] : tensor<4x?x?xf32>
// CHECK: %[[VAL_1:.+]] = arith.divsi %[[DIM_2]], %[[C8]] : index
// CHECK: %[[EXPANDED_3:.+]] = tensor.expand_shape %[[GENERIC]] {{\[\[}}0], [1], [2, 3]] output_shape [4, %[[DIM]], %[[VAL_1]], 8] : tensor<4x?x?xf32> into tensor<4x?x?x8xf32>
// CHECK: %[[EXPANDED_3:.+]] = tensor.expand_shape %[[GENERIC]] {{\[\[}}0], [1], [2, 3]] output_shape [4, %[[DIM]], %[[DIM_2]], 8] : tensor<4x?x?xf32> into tensor<4x?x?x8xf32>
// CHECK: return %[[EXPANDED_3]]

// -----
Expand Down Expand Up @@ -475,15 +505,16 @@ func.func @fold_non_consecutive_dims(%arg0 : tensor<?x?xi32>, %sz0: index, %sz1:
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1) -> (d1, d0)>
// CHECK: func @fold_non_consecutive_dims(
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?xi32>, %[[SZ0:.+]]: index, %[[SZ1:.+]]: index)
// CHECK: %[[C1:.+]] = arith.constant 1 : index
// CHECK: %[[C4:.+]] = arith.constant 4 : index
// CHECK: %[[C8:.+]] = arith.constant 8 : index
// CHECK: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[C2:.+]] = arith.constant 2 : index
// CHECK-DAG: %[[C4:.+]] = arith.constant 4 : index
// CHECK-DAG: %[[C8:.+]] = arith.constant 8 : index
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index
// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[ARG0]] {{\[\[}}0, 1], [2, 3]] output_shape [%[[SZ0]], 4, %[[SZ1]], 8] : tensor<?x?xi32> into tensor<?x4x?x8xi32>
// CHECK: %[[DIM:.+]] = tensor.dim %[[EXPANDED]], %[[C0]]
// CHECK: %[[DIM_0:.+]] = tensor.dim %[[EXPANDED]], %[[C2]]
// CHECK-DAG: %[[DIM:.+]] = tensor.dim %[[EXPANDED]], %[[C0]]
// CHECK-DAG: %[[DIM_0:.+]] = tensor.dim %[[EXPANDED]], %[[C2]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DIM_0]], %[[DIM]])
// CHECK-DAG: %[[DIM_1:.+]] = tensor.dim %[[EXPANDED]], %[[C0]]
// CHECK-DAG: %[[DIM_2:.+]] = tensor.dim %[[EXPANDED]], %[[C2]]
// CHECK: %[[COLLAPSE_INIT:.+]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1], [2, 3]{{\]}}
// CHECK: %[[GENERIC:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]]
Expand All @@ -502,11 +533,7 @@ func.func @fold_non_consecutive_dims(%arg0 : tensor<?x?xi32>, %sz0: index, %sz1:
// CHECK-DAG: %[[T6:.+]] = arith.addi %[[T5]], %[[T3]]
// CHECK-DAG: %[[T7:.+]] = arith.index_cast %[[T6]]
// CHECK: linalg.yield %[[T7]]
// CHECK: %[[DIM_1:.+]] = tensor.dim %[[GENERIC]], %[[C0]] : tensor<?x?xi32>
// CHECK: %[[DIM_2:.+]] = tensor.dim %[[GENERIC]], %[[C1]] : tensor<?x?xi32>
// CHECK: %[[VAL_2:.+]] = arith.divsi %[[DIM_1]], %[[C8]] : index
// CHECK: %[[VAL_3:.+]] = arith.divsi %[[DIM_2]], %[[C4]] : index
// CHECK: %[[EXPANDED_3:.+]] = tensor.expand_shape %[[GENERIC]] {{\[\[}}0, 1], [2, 3]] output_shape [%[[VAL_2]], 8, %[[VAL_3]], 4] : tensor<?x?xi32> into tensor<?x8x?x4xi32>
// CHECK: %[[EXPANDED_3:.+]] = tensor.expand_shape %[[GENERIC]] {{\[\[}}0, 1], [2, 3]] output_shape [%[[DIM_2]], 8, %[[DIM_1]], 4] : tensor<?x?xi32> into tensor<?x8x?x4xi32>
// CHECK: return %[[EXPANDED_3]]

// -----
Expand Down
7 changes: 3 additions & 4 deletions mlir/test/Dialect/Linalg/fusion-push-reshape.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -5,15 +5,14 @@

// CHECK-LABEL: func @reshape
// CHECK-SAME: (%[[A:.*]]: tensor<?x16xf32>, %[[B:.*]]: tensor<16xf32>, %[[INIT:.*]]: tensor<?x112x16xf32>, %[[SZ0:.*]]: index)
// CHECK: %[[C112:.*]] = arith.constant 112 : index
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[A]]
// CHECK: %[[DIM:.*]] = tensor.dim %[[EXPANDED]], %[[C0]]
// CHECK: %[[RI:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1], [2]] : tensor<?x112x16xf32> into tensor<?x16xf32>
// CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP3]], #[[$MAP2]]],
// CHECK-SAME: iterator_types = ["parallel", "parallel"]}
// CHECK-SAME: ins(%[[A]], %[[B]] : tensor<?x16xf32>, tensor<16xf32>) outs(%[[RI]] : tensor<?x16xf32>)
// CHECK: %[[DIM:.*]] = tensor.dim %[[R]], %[[C0]] : tensor<?x16xf32>
// CHECK: %[[VAL_1:.*]] = arith.divsi %[[DIM]], %[[C112]] : index
// CHECK: %[[RR:.*]] = tensor.expand_shape %[[R]] {{\[\[}}0, 1], [2]] output_shape [%[[VAL_1]], 112, 16] : tensor<?x16xf32> into tensor<?x112x16xf32>
// CHECK: %[[RR:.*]] = tensor.expand_shape %[[R]] {{\[\[}}0, 1], [2]] output_shape [%[[DIM]], 112, 16] : tensor<?x16xf32> into tensor<?x112x16xf32>
// CHECK: return %[[RR]] : tensor<?x112x16xf32>
func.func @reshape(%A: tensor<?x16xf32>, %B: tensor<16xf32>, %init: tensor<?x112x16xf32>, %sz0: index) -> tensor<?x112x16xf32> {
%0 = tensor.expand_shape %A [[0, 1], [2]] output_shape [%sz0, 112, 16]
Expand Down
Loading