Skip to content

update for CB #714

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
161 changes: 154 additions & 7 deletions src/lighteval/models/transformers/transformers_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@

import logging
import os
from typing import Optional, Tuple, Union
from typing import Dict, Optional, Tuple, Union

import torch
import torch.nn.functional as F
Expand Down Expand Up @@ -254,14 +254,15 @@ def from_model(

# Instanciate the object without using __init__
self = cls.__new__(cls)
self.config = config
self.transformers_config = model.config
self.generation_config_dict = config.generation_parameters.to_transformers_dict()
self.config = config if config is not None else TransformersModelConfig(model_name=model.config.name_or_path)
if config is not None:
self.generation_config_dict = config.generation_parameters.to_transformers_dict()
self._max_length = self._init_max_length()
self._tokenizer = self._create_auto_tokenizer()
self.batch_size = config.batch_size
self.batch_size = getattr(config, "batch_size", None)
self.model_name = _simplify_name(model.name_or_path)
self.model_sha = config.get_model_sha()
self.model_sha = self.config.get_model_sha()

# If model_parallel is not set we compare the number of processes with the number of GPUs
self.model = model
Expand Down Expand Up @@ -508,7 +509,114 @@ def greedy_until_multi_turn( # noqa: C901
) -> GenerativeMultiturnResponse:
raise NotImplementedError("This method is not implemented for this model")

def greedy_until(
def _continious_greedy_until(
self,
requests: list[GreedyUntilRequest],
) -> list[GenerativeResponse]:
"""
Generates responses using a greedy decoding strategy until certain ending conditions are met.

Args:
requests (list[Request]): list of requests containing the context and ending conditions.
override_bs (int, optional): Override the batch size for generation. Defaults to None.

Returns:
list[GenerateReturn]: list of generated responses.
"""
for request in requests:
request.stop_sequence = as_list(request.stop_sequence) + [self.tokenizer.eos_token]
request.tokenized_context = self.tok_encode(request.context)

dataset = GenerativeTaskDataset(requests=requests, num_dataset_splits=self.DATASET_SPLITS)
results = []

for split in tqdm(
dataset.splits_iterator(),
total=dataset.num_dataset_splits,
desc="Splits",
position=0,
disable=False, # self.disable_tqdm,
):
# For chat models, generation stops with EOS token, so we don't need to specify stop tokens
if self.use_chat_template:
stop_tokens = []
else:
# NOTE: we are assuming all items in a batch behave similarly (same
# stop_tokens and max_tokens genrated) which is not necessarily
# the case! Because of that we only use batch size of 1
stop_tokens = split[0].stop_sequence

max_new_tokens = self.config.generation_parameters.max_new_tokens or split[0].generation_size
returns_logits = split[0].use_logits
num_samples = split[0].num_samples

context = [sample.context for sample in split]
tokenized = self.tokenizer(context, add_special_tokens=self.add_special_tokens)

# The main question for this step is the following:
# Would we rather truncate the prompt to allow generation to go to max_new_tokens, at the risk
# of losing some meaning, or have some generations that are exceedingly short?
# The choice we go for here is to avoid truncating the prompt if we can, since it
# should have been managed by the prompt creator/few shot manager if requested by the user.
inputs = tokenized["input_ids"]
context_size = len(inputs[0])

# left truncate the inputs to the maximum length
if max_new_tokens is not None:
if context_size + max_new_tokens > self.max_length:
logger.warning(
f"{context_size + max_new_tokens=} which is greater than {self.max_length=}. Truncating context to {self.max_length - max_new_tokens} tokens."
)
context_size = self.max_length - max_new_tokens
if context_size < 0:
logger.critical(
f"{context_size=} is less than 0, either reduce the max_new_tokens or increase model max length."
)
raise ValueError("Context size is less than 0.")
inputs = [input[-context_size:] for input in inputs]
else:
if context_size > self.max_length:
logger.warning(
f"{context_size=} which is greater than {self.max_length=}. Truncating context to {self.max_length} tokens."
)
context_size = self.max_length
inputs = [input[-context_size:] for input in inputs]

_outputs = self._generate(
inputs=inputs,
max_new_tokens=max_new_tokens,
stop_tokens=stop_tokens,
returns_logits=returns_logits,
num_samples=num_samples,
)

for req_id, _output in _outputs.items():
output_token_ids = []
logprobs_raw = []
result = []

# for output in _output.outputs:
output_token_ids.append(_output.static_outputs)
# logprobs_raw.append(output.logprobs)
result.append(self.tokenizer.decode(_output.static_outputs))

if logprobs_raw and output_token_ids and False:
logprobs = [logprobs_raw[0][token_id].logprob for token_id in output_token_ids[0]]
else:
logprobs = []

input_token_ids = _output.full_prompt_ids
cur_response = GenerativeResponse(
result=result,
logits=logprobs,
generated_tokens=output_token_ids,
input_tokens=input_token_ids,
)
results.append(cur_response)

return dataset.get_original_order(results)

def _padded_greedy_until(
self,
requests: list[GreedyUntilRequest],
) -> list[GenerativeResponse]:
Expand Down Expand Up @@ -625,12 +733,41 @@ def greedy_until(
returns_logits=returns_logits,
num_samples=num_samples,
do_sample=do_sample,
use_fast=False,
)
results.extend(cur_reponses)

return dataset.get_original_order(results)

def _generate(
def greedy_until(
self,
requests: list[GreedyUntilRequest],
use_fast: bool = True,
) -> list[GenerativeResponse]:
if use_fast:
return self._continious_greedy_until(requests)
else:
return self._padded_greedy_until(requests)

def _generate_fast(
self,
inputs: list[list[int]],
max_new_tokens: Optional[int] = None,
stop_tokens: Optional[list[str]] = None,
returns_logits: Optional[bool] = False,
num_samples: int = 1,
generate: bool = True,
) -> Dict[str, GenerativeResponse]:
# Compute model generation
batch_outputs = self.model.generate_batch(
inputs=inputs,
generation_config=self.model.generation_config,
# You can pass request-specific overrides here, e.g., max_new_tokens=100
)

return batch_outputs

def _generate_padded(
self,
batch: Batch,
max_new_tokens: int,
Expand Down Expand Up @@ -711,6 +848,16 @@ def _generate(

return all_responses

def _generate(
self,
use_fast: bool = True,
**kwargs,
) -> list[GenerativeResponse]:
if use_fast:
return self._generate_fast(**kwargs)
else:
return self._generate_padded(**kwargs)

def loglikelihood(
self,
requests: list[LoglikelihoodRequest],
Expand Down
Loading