@@ -18,7 +18,12 @@ class PermutationGroups(Category):
18
18
The category of permutation groups.
19
19
20
20
A *permutation group* is a group whose elements are concretely
21
- represented by permutations of some set.
21
+ represented by permutations of some set. In other words, the group
22
+ comes endowed with a distinguished action on some set.
23
+
24
+ This distinguished action should be preserved by permutation group
25
+ morphisms. For details, see
26
+ :Wikipedia:`Permutation_group#Permutation_isomorphic_groups`.
22
27
23
28
.. TODO:: shall we accept only permutations with finite support or not?
24
29
@@ -29,6 +34,13 @@ class PermutationGroups(Category):
29
34
sage: PermutationGroups().super_categories()
30
35
[Category of groups]
31
36
37
+ The category of permutation groups defines additional structure
38
+ that should be preserved by morphisms, namely the distinguished
39
+ action::
40
+
41
+ sage: PermutationGroups().is_structure_category()
42
+ True
43
+
32
44
TESTS::
33
45
34
46
sage: C = PermutationGroups()
@@ -46,20 +58,4 @@ def super_categories(self):
46
58
"""
47
59
return [Groups ()]
48
60
49
- def is_structure_category (self ):
50
- r"""
51
- Return whether ``self`` is a structure category.
52
-
53
- .. SEEALSO:: :meth:`Category.is_structure_category`
54
-
55
- The category of permutations groups defines no new structure:
56
- permutation groups are a special class of groups.
57
-
58
- EXAMPLES::
59
-
60
- sage: PermutationGroups().is_structure_category()
61
- False
62
- """
63
- return False
64
-
65
61
Finite = LazyImport ('sage.categories.finite_permutation_groups' , 'FinitePermutationGroups' )
0 commit comments