Skip to content
This repository was archived by the owner on Jan 30, 2023. It is now read-only.

Commit a486db2

Browse files
committed
Call the factorial() method of an Integer
1 parent c47dbd4 commit a486db2

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

src/sage/modular/modform_hecketriangle/abstract_space.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,7 @@
2424
from sage.modules.free_module_element import is_FreeModuleElement
2525
from sage.matrix.constructor import matrix
2626
from sage.modules.free_module_element import vector
27+
from sage.rings.all import Integer
2728

2829
from sage.misc.cachefunc import cached_method
2930

@@ -2153,7 +2154,7 @@ def q_basis(self, m=None, min_exp=0, order_1=ZZ(0)):
21532154

21542155
column_len = len(q_basis)
21552156
if (m >= column_len + min_exp):
2156-
raise ValueError("Index out of range: m={} >= {}=dimension + min_exp".format(m, size + min_exp))
2157+
raise ValueError("Index out of range: m={} >= {}=dimension + min_exp".format(m, column_len + min_exp))
21572158

21582159
return q_basis[m - min_exp]
21592160
else:
@@ -2268,9 +2269,8 @@ def rationalize_series(self, laurent_series, coeff_bound = 1e-10, denom_factor =
22682269
True
22692270
"""
22702271

2271-
from sage.rings.all import FractionField, PolynomialRing, PowerSeriesRing, prime_range
2272+
from sage.rings.all import prime_range
22722273
from sage.misc.all import prod
2273-
from sage.functions.other import factorial
22742274
from warnings import warn
22752275

22762276
denom_factor = ZZ(denom_factor)
@@ -2336,7 +2336,7 @@ def denominator_estimate(m):
23362336
return ZZ(1/dvalue)**m
23372337

23382338
hecke_n = self.hecke_n()
2339-
bad_factors = [fac for fac in factorial(m).factor() if (fac[0] % hecke_n) not in [1, hecke_n-1] and fac[0] > 2]
2339+
bad_factors = [fac for fac in Integer(m).factorial().factor() if (fac[0] % hecke_n) not in [1, hecke_n-1] and fac[0] > 2]
23402340
bad_factorial = prod([fac[0]**fac[1] for fac in bad_factors])
23412341

23422342
return ZZ(2**(6*m) * hecke_n**(2*m) * prod([ p**m for p in prime_range(m+1) if hecke_n % p == 0 and p > 2 ]) * bad_factorial)**(cor_exp + 1)

0 commit comments

Comments
 (0)