@@ -32,7 +32,7 @@ class CoxeterGroups(Category_singleton):
32
32
33
33
`I` is the *index set* of `W` and `|I|` is the *rank* of `W`.
34
34
35
- See http://en.wikipedia.org/wiki/ Coxeter_group for details.
35
+ See :Wikipedia:` Coxeter_group` for details.
36
36
37
37
EXAMPLES::
38
38
@@ -67,6 +67,19 @@ class CoxeterGroups(Category_singleton):
67
67
68
68
.. SEEALSO:: :class:`WeylGroups`, :mod:`sage.combinat.root_system`
69
69
70
+ .. WARNING::
71
+
72
+ It is assumed that morphisms in this category preserve the
73
+ distinguished choice of simple reflections. In particular,
74
+ subobjects in this category are parabolic subgroups. In this
75
+ sense, this category might be better named ``Coxeter
76
+ Systems``. In the long run we might want to have two distinct
77
+ categories, one for Coxeter groups (with morphisms being just
78
+ group morphisms) and one for Coxeter systems::
79
+
80
+ sage: CoxeterGroups().is_full_subcategory(Groups())
81
+ False
82
+
70
83
TESTS::
71
84
72
85
sage: W = CoxeterGroups().example(); TestSuite(W).run(verbose = "True")
@@ -111,23 +124,6 @@ def super_categories(self):
111
124
Finite = LazyImport ('sage.categories.finite_coxeter_groups' , 'FiniteCoxeterGroups' )
112
125
Algebras = LazyImport ('sage.categories.coxeter_group_algebras' , 'CoxeterGroupAlgebras' )
113
126
114
- def is_structure_category (self ):
115
- r"""
116
- Return whether ``self`` is a structure category.
117
-
118
- .. SEEALSO:: :meth:`Category.is_structure_category`
119
-
120
- The category of Coxeter groups defines no new structure:
121
- Coxeter groups are a special class of groups.
122
-
123
- EXAMPLES::
124
-
125
- sage: CoxeterGroups().is_structure_category()
126
- False
127
- """
128
- return False
129
-
130
-
131
127
class ParentMethods :
132
128
133
129
@abstract_method
0 commit comments