diff --git a/Doc/library/itertools.rst b/Doc/library/itertools.rst index 49fb8407890c36..26ede4b49a0108 100644 --- a/Doc/library/itertools.rst +++ b/Doc/library/itertools.rst @@ -1000,31 +1000,6 @@ which incur interpreter overhead. # first_true([a,b], x, f) --> a if f(a) else b if f(b) else x return next(filter(pred, iterable), default) - def random_product(*args, repeat=1): - "Random selection from itertools.product(*args, **kwds)" - pools = [tuple(pool) for pool in args] * repeat - return tuple(map(random.choice, pools)) - - def random_permutation(iterable, r=None): - "Random selection from itertools.permutations(iterable, r)" - pool = tuple(iterable) - r = len(pool) if r is None else r - return tuple(random.sample(pool, r)) - - def random_combination(iterable, r): - "Random selection from itertools.combinations(iterable, r)" - pool = tuple(iterable) - n = len(pool) - indices = sorted(random.sample(range(n), r)) - return tuple(pool[i] for i in indices) - - def random_combination_with_replacement(iterable, r): - "Random selection from itertools.combinations_with_replacement(iterable, r)" - pool = tuple(iterable) - n = len(pool) - indices = sorted(random.choices(range(n), k=r)) - return tuple(pool[i] for i in indices) - def nth_combination(iterable, r, index): "Equivalent to list(combinations(iterable, r))[index]" pool = tuple(iterable) diff --git a/Doc/library/random.rst b/Doc/library/random.rst index 94215daad11256..2b87a36f7c5200 100644 --- a/Doc/library/random.rst +++ b/Doc/library/random.rst @@ -564,6 +564,37 @@ Simulation of arrival times and service deliveries for a multiserver queue:: Recipes ------- +These recipes show how to efficiently make random selections +from the combinatoric iterators in the :mod:`itertools` module: + +.. testcode:: + import random + + def random_product(*args, repeat=1): + "Random selection from itertools.product(*args, **kwds)" + pools = [tuple(pool) for pool in args] * repeat + return tuple(map(random.choice, pools)) + + def random_permutation(iterable, r=None): + "Random selection from itertools.permutations(iterable, r)" + pool = tuple(iterable) + r = len(pool) if r is None else r + return tuple(random.sample(pool, r)) + + def random_combination(iterable, r): + "Random selection from itertools.combinations(iterable, r)" + pool = tuple(iterable) + n = len(pool) + indices = sorted(random.sample(range(n), r)) + return tuple(pool[i] for i in indices) + + def random_combination_with_replacement(iterable, r): + "Random selection from itertools.combinations_with_replacement(iterable, r)" + pool = tuple(iterable) + n = len(pool) + indices = sorted(random.choices(range(n), k=r)) + return tuple(pool[i] for i in indices) + The default :func:`.random` returns multiples of 2⁻⁵³ in the range *0.0 ≤ x < 1.0*. All such numbers are evenly spaced and are exactly representable as Python floats. However, many other representable