diff --git a/doc/source/user_guide/groupby.rst b/doc/source/user_guide/groupby.rst index 267499edfae6f..8c80fa7052dd5 100644 --- a/doc/source/user_guide/groupby.rst +++ b/doc/source/user_guide/groupby.rst @@ -668,8 +668,9 @@ column, which produces an aggregated result with a hierarchical column index: grouped[["C", "D"]].agg(["sum", "mean", "std"]) -The resulting aggregations are named after the functions themselves. If you -need to rename, then you can add in a chained operation for a ``Series`` like this: +The resulting aggregations are named after the functions themselves. + +For a ``Series``, if you need to rename, you can add in a chained operation like this: .. ipython:: python @@ -679,8 +680,19 @@ need to rename, then you can add in a chained operation for a ``Series`` like th .rename(columns={"sum": "foo", "mean": "bar", "std": "baz"}) ) +Or, you can simply pass a list of tuples each with the name of the new column and the aggregate function: + +.. ipython:: python + + ( + grouped["C"] + .agg([("foo", "sum"), ("bar", "mean"), ("baz", "std")]) + ) + For a grouped ``DataFrame``, you can rename in a similar manner: +By chaining ``rename`` operation, + .. ipython:: python ( @@ -689,6 +701,16 @@ For a grouped ``DataFrame``, you can rename in a similar manner: ) ) +Or, passing a list of tuples, + +.. ipython:: python + + ( + grouped[["C", "D"]].agg( + [("foo", "sum"), ("bar", "mean"), ("baz", "std")] + ) + ) + .. note:: In general, the output column names should be unique, but pandas will allow