Groupby multiple columns causes agg to have precision loss on int64 #33234
Labels
Dtype Conversions
Unexpected or buggy dtype conversions
good first issue
Groupby
Needs Tests
Unit test(s) needed to prevent regressions
Code Sample, a copy-pastable example if possible
Problem description
Precision loss on the int64 column when grouping by multiple columns.
Similar behaviour can be seen when doing
but that seems like a different issue with cythonized group sum not supporting int64? According to: #15027 (comment)
Expected Output
Actual Output
Output of
pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.6.5.final.0
python-bits : 64
OS : Linux
OS-release : 3.16.0-77-generic
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_AU.UTF-8
LOCALE : en_AU.UTF-8
pandas : 1.0.3
numpy : 1.18.2
pytz : 2019.3
dateutil : 2.8.1
pip : 20.0.2
setuptools : 46.1.3
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None
The text was updated successfully, but these errors were encountered: