You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The boosting algorithm for learning a query online. $T$ hypotheses are constructed, each using a single feature. The final hypothesis is a weighted linear combination of the $T$ hypotheses, where the weights are inverselt proportional to the training errors.
21
+
This functionselects a set of classifiers. Iteratively takes the best classifiers based on a weighted error.
22
+
23
+
parameter `positiveIIs`: List of positive integral image examples [type: Abstracy Array]
24
+
parameter `negativeIIs`: List of negative integral image examples [type: Abstract Array]
25
+
parameter `numClassifiers`: Number of classifiers to select. -1 will use all
26
+
classifiers [type: Integer]
27
+
28
+
return`classifiers`: List of selected features [type: HaarLikeFeature]
29
+
=#
30
+
32
31
numPos = length(positiveIIs)
33
32
numNeg = length(negativeIIs)
34
33
global numImgs = numPos + numNeg
@@ -61,6 +60,7 @@ function learn(positiveIIs::AbstractArray, negativeIIs::AbstractArray, numClassi
61
60
The series of `deep*` functions——though useful in general——were designed from awkward arrays of tuples of arrays, which came about from a translation error in this case.
62
61
=#
63
62
weights = vcat(posWeights, negWeights)
63
+
# println(weights)
64
64
# weights = vcat(posWeights, negWeights)
65
65
# weights = hcat((posWeights, negWeights))
66
66
# weights = vcat([posWeights, negWeights])
@@ -86,6 +86,7 @@ function learn(positiveIIs::AbstractArray, negativeIIs::AbstractArray, numClassi
86
86
87
87
# bar = progressbar.ProgressBar()
88
88
# @everywhere numImgs begin
89
+
# println(votes)
89
90
@everywhere begin
90
91
n = numImgs
91
92
processes = length(numImgs)
@@ -107,7 +108,7 @@ function learn(positiveIIs::AbstractArray, negativeIIs::AbstractArray, numClassi
107
108
108
109
n = numClassifiers
109
110
p = Progress(n, 1) # minimum update interval: 1 second
0 commit comments