@@ -81,7 +81,6 @@ class AltDiffusionImg2ImgPipeline(DiffusionPipeline):
81
81
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
82
82
"""
83
83
84
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.AltDiffusionPipeline.__init__
85
84
def __init__ (
86
85
self ,
87
86
vae : AutoencoderKL ,
@@ -148,7 +147,6 @@ def __init__(
148
147
feature_extractor = feature_extractor ,
149
148
)
150
149
151
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.AltDiffusionPipeline.enable_attention_slicing
152
150
def enable_attention_slicing (self , slice_size : Optional [Union [str , int ]] = "auto" ):
153
151
r"""
154
152
Enable sliced attention computation.
@@ -168,7 +166,6 @@ def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto
168
166
slice_size = self .unet .config .attention_head_dim // 2
169
167
self .unet .set_attention_slice (slice_size )
170
168
171
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.AltDiffusionPipeline.disable_attention_slicing
172
169
def disable_attention_slicing (self ):
173
170
r"""
174
171
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
@@ -177,7 +174,6 @@ def disable_attention_slicing(self):
177
174
# set slice_size = `None` to disable `attention slicing`
178
175
self .enable_attention_slicing (None )
179
176
180
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.AltDiffusionPipeline.enable_sequential_cpu_offload
181
177
def enable_sequential_cpu_offload (self , gpu_id = 0 ):
182
178
r"""
183
179
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
@@ -196,7 +192,6 @@ def enable_sequential_cpu_offload(self, gpu_id=0):
196
192
cpu_offload (cpu_offloaded_model , device )
197
193
198
194
@property
199
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.AltDiffusionPipeline._execution_device
200
195
def _execution_device (self ):
201
196
r"""
202
197
Returns the device on which the pipeline's models will be executed. After calling
@@ -214,7 +209,6 @@ def _execution_device(self):
214
209
return torch .device (module ._hf_hook .execution_device )
215
210
return self .device
216
211
217
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.AltDiffusionPipeline.enable_xformers_memory_efficient_attention
218
212
def enable_xformers_memory_efficient_attention (self ):
219
213
r"""
220
214
Enable memory efficient attention as implemented in xformers.
@@ -227,14 +221,12 @@ def enable_xformers_memory_efficient_attention(self):
227
221
"""
228
222
self .unet .set_use_memory_efficient_attention_xformers (True )
229
223
230
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.AltDiffusionPipeline.disable_xformers_memory_efficient_attention
231
224
def disable_xformers_memory_efficient_attention (self ):
232
225
r"""
233
226
Disable memory efficient attention as implemented in xformers.
234
227
"""
235
228
self .unet .set_use_memory_efficient_attention_xformers (False )
236
229
237
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.AltDiffusionPipeline._encode_prompt
238
230
def _encode_prompt (self , prompt , device , num_images_per_prompt , do_classifier_free_guidance , negative_prompt ):
239
231
r"""
240
232
Encodes the prompt into text encoder hidden states.
@@ -340,7 +332,6 @@ def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_fr
340
332
341
333
return text_embeddings
342
334
343
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.AltDiffusionPipeline.run_safety_checker
344
335
def run_safety_checker (self , image , device , dtype ):
345
336
if self .safety_checker is not None :
346
337
safety_checker_input = self .feature_extractor (self .numpy_to_pil (image ), return_tensors = "pt" ).to (device )
@@ -351,7 +342,6 @@ def run_safety_checker(self, image, device, dtype):
351
342
has_nsfw_concept = None
352
343
return image , has_nsfw_concept
353
344
354
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.AltDiffusionPipeline.decode_latents
355
345
def decode_latents (self , latents ):
356
346
latents = 1 / 0.18215 * latents
357
347
image = self .vae .decode (latents ).sample
@@ -360,7 +350,6 @@ def decode_latents(self, latents):
360
350
image = image .cpu ().permute (0 , 2 , 3 , 1 ).float ().numpy ()
361
351
return image
362
352
363
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.AltDiffusionPipeline.prepare_extra_step_kwargs
364
353
def prepare_extra_step_kwargs (self , generator , eta ):
365
354
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
366
355
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
0 commit comments