Skip to content

Commit 7d6a24a

Browse files
jploskicebtenzzre
authored andcommitted
mpt : updated convert-mpt-hf-to-gguf.py to reflect changes made to convert-gptneox-hf-to-gguf.py in pr:3252
1 parent 1364bcd commit 7d6a24a

File tree

1 file changed

+7
-48
lines changed

1 file changed

+7
-48
lines changed

convert-mpt-hf-to-gguf.py

+7-48
Original file line numberDiff line numberDiff line change
@@ -19,29 +19,6 @@
1919
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
2020
import gguf
2121

22-
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
23-
24-
25-
def bytes_to_unicode():
26-
"""
27-
Returns list of utf-8 byte and a corresponding list of unicode strings.
28-
The reversible bpe codes work on unicode strings.
29-
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
30-
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
31-
This is a significant percentage of your normal, say, 32K bpe vocab.
32-
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
33-
And avoids mapping to whitespace/control characters the bpe code barfs on.
34-
"""
35-
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
36-
cs = bs[:]
37-
n = 0
38-
for b in range(2**8):
39-
if b not in bs:
40-
bs.append(b)
41-
cs.append(2**8+n)
42-
n += 1
43-
return dict(zip(bs, (chr(n) for n in cs)))
44-
4522

4623
def count_model_parts(dir_model: Path) -> int:
4724
num_parts = 0
@@ -131,6 +108,8 @@ def parse_args() -> argparse.Namespace:
131108
print("gguf: get tokenizer metadata")
132109

133110
tokens: list[bytearray] = []
111+
scores: list[float] = []
112+
toktypes: list[int] = []
134113

135114
tokenizer_json_file = dir_model / 'tokenizer.json'
136115
if not tokenizer_json_file.is_file():
@@ -155,31 +134,15 @@ def parse_args() -> argparse.Namespace:
155134
tokenizer = AutoTokenizer.from_pretrained(dir_model)
156135

157136
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
158-
byte_encoder = bytes_to_unicode()
159-
byte_decoder = {v: k for k, v in byte_encoder.items()}
160137

161138
for i in range(vocab_size):
162-
if i in reverse_vocab:
163-
try:
164-
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
165-
except KeyError:
166-
text = bytearray()
167-
for c in reverse_vocab[i]:
168-
if ord(c) < 256: # single byte character
169-
try:
170-
text.append(byte_decoder[c])
171-
except KeyError:
172-
text.extend(c.encode('utf-8'))
173-
else: # multibyte special token character
174-
text.extend(c.encode('utf-8'))
175-
else:
176-
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token. (It's normal for MPT.)")
177-
pad_token = f"[PAD{i}]".encode("utf8")
178-
text = bytearray(pad_token)
179-
180-
tokens.append(text)
139+
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
140+
scores.append(0.0) # dummy
141+
toktypes.append(gguf.TokenType.NORMAL)
181142

182143
gguf_writer.add_token_list(tokens)
144+
gguf_writer.add_token_scores(scores)
145+
gguf_writer.add_token_types(toktypes)
183146

184147
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
185148
special_vocab.add_to_gguf(gguf_writer)
@@ -239,10 +202,6 @@ def parse_args() -> argparse.Namespace:
239202

240203
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
241204

242-
243-
# if new_name == "wte.weight" and data.shape[0] == 50432 and vocab_size == 50254:
244-
# data = data[0:vocab_size,:]
245-
246205
gguf_writer.add_tensor(new_name, data)
247206

248207
# note: MPT output is tied to (same as) wte in original model;

0 commit comments

Comments
 (0)