Skip to content

Commit ce7f658

Browse files
larsonerbritta-wstnr
authored andcommitted
MRG: Remove double-backticks (mne-tools#5120)
* FIX: Remove double-backticks * FIX: Width * FIX: Fix warnings
1 parent 4592fcf commit ce7f658

File tree

11 files changed

+40
-40
lines changed

11 files changed

+40
-40
lines changed

mne/beamformer/_lcmv.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424
from ..channels.channels import _contains_ch_type
2525

2626
depr_message = ("This function is deprecated and will be removed in 0.17, "
27-
"please use `make_lcmv` and `%s` instead.")
27+
"please use :func:`make_lcmv` and :func:`%s` instead.")
2828

2929

3030
def _reg_pinv(x, reg, rcond=1e-15):
@@ -626,7 +626,7 @@ def apply_lcmv(evoked, filters, max_ori_out='signed', verbose=None):
626626
627627
See Also
628628
--------
629-
apply_lcmv_raw, apply_lcmv_epochs
629+
make_lcmv, apply_lcmv_raw, apply_lcmv_epochs
630630
"""
631631
_check_reference(evoked)
632632

@@ -675,7 +675,7 @@ def apply_lcmv_epochs(epochs, filters, max_ori_out='signed',
675675
676676
See Also
677677
--------
678-
apply_lcmv_raw, apply_lcmv
678+
make_lcmv, apply_lcmv_raw, apply_lcmv
679679
"""
680680
_check_reference(epochs)
681681

@@ -728,7 +728,7 @@ def apply_lcmv_raw(raw, filters, start=None, stop=None, max_ori_out='signed',
728728
729729
See Also
730730
--------
731-
apply_lcmv_epochs, apply_lcmv
731+
make_lcmv, apply_lcmv_epochs, apply_lcmv
732732
"""
733733
_check_reference(raw)
734734

mne/decoding/base.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -31,9 +31,9 @@ class LinearModel(BaseEstimator):
3131
3232
Attributes
3333
----------
34-
``filters_`` : ndarray, shape ([n_targets], n_features)
34+
filters_ : ndarray, shape ([n_targets], n_features)
3535
If fit, the filters used to decompose the data.
36-
``patterns_`` : ndarray, shape ([n_targets], n_features)
36+
patterns_ : ndarray, shape ([n_targets], n_features)
3737
If fit, the patterns used to restore M/EEG signals.
3838
3939
Notes

mne/decoding/csp.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -63,13 +63,13 @@ class CSP(TransformerMixin, BaseEstimator):
6363
6464
Attributes
6565
----------
66-
``filters_`` : ndarray, shape (n_components, n_channels)
66+
filters_ : ndarray, shape (n_components, n_channels)
6767
If fit, the CSP components used to decompose the data, else None.
68-
``patterns_`` : ndarray, shape (n_components, n_channels)
68+
patterns_ : ndarray, shape (n_components, n_channels)
6969
If fit, the CSP patterns used to restore M/EEG signals, else None.
70-
``mean_`` : ndarray, shape (n_components,)
70+
mean_ : ndarray, shape (n_components,)
7171
If fit, the mean squared power for each component.
72-
``std_`` : ndarray, shape (n_components,)
72+
std_ : ndarray, shape (n_components,)
7373
If fit, the std squared power for each component.
7474
7575
See Also
@@ -702,13 +702,13 @@ class SPoC(CSP):
702702
703703
Attributes
704704
----------
705-
``filters_`` : ndarray, shape (n_components, n_channels)
705+
filters_ : ndarray, shape (n_components, n_channels)
706706
If fit, the SPoC spatial filters, else None.
707-
``patterns_`` : ndarray, shape (n_components, n_channels)
707+
patterns_ : ndarray, shape (n_components, n_channels)
708708
If fit, the SPoC spatial patterns, else None.
709-
``mean_`` : ndarray, shape (n_components,)
709+
mean_ : ndarray, shape (n_components,)
710710
If fit, the mean squared power for each component.
711-
``std_`` : ndarray, shape (n_components,)
711+
std_ : ndarray, shape (n_components,)
712712
If fit, the std squared power for each component.
713713
714714
See Also

mne/decoding/ems.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -28,9 +28,9 @@ class EMS(TransformerMixin, EstimatorMixin):
2828
2929
Attributes
3030
----------
31-
``filters_`` : ndarray, shape (n_channels, n_times)
31+
filters_ : ndarray, shape (n_channels, n_times)
3232
The set of spatial filters.
33-
``classes_`` : ndarray, shape (n_classes,)
33+
classes_ : ndarray, shape (n_classes,)
3434
The target classes.
3535
3636
References

mne/decoding/receptive_field.py

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -55,16 +55,16 @@ class ReceptiveField(BaseEstimator):
5555
5656
Attributes
5757
----------
58-
``coef_`` : array, shape ([n_outputs, ]n_features, n_delays)
58+
coef_ : array, shape ([n_outputs, ]n_features, n_delays)
5959
The coefficients from the model fit, reshaped for easy visualization.
6060
During :meth:`mne.decoding.ReceptiveField.fit`, if ``y`` has one
6161
dimension (time), the ``n_outputs`` dimension here is omitted.
62-
``patterns_`` : array, shape ([n_outputs, ]n_features, n_delays)
62+
patterns_ : array, shape ([n_outputs, ]n_features, n_delays)
6363
If fit, the inverted coefficients from the model.
64-
``delays_``: array, shape (n_delays,), dtype int
64+
delays_ : array, shape (n_delays,), dtype int
6565
The delays used to fit the model, in indices. To return the delays
6666
in seconds, use ``self.delays_ / self.sfreq``
67-
``valid_samples_`` : slice
67+
valid_samples_ : slice
6868
The rows to keep during model fitting after removing rows with
6969
missing values due to time delaying. This can be used to get an
7070
output equivalent to using :func:`numpy.convolve` or
@@ -292,9 +292,9 @@ def predict(self, X):
292292
def score(self, X, y):
293293
"""Score predictions generated with a receptive field.
294294
295-
This calls `self.predict`, then masks the output of this
296-
and `y` with `self.mask_prediction_`. Finally, it passes
297-
this to a `sklearn` scorer.
295+
This calls ``self.predict``, then masks the output of this
296+
and ``y` with ``self.mask_prediction_``. Finally, it passes
297+
this to a :mod:`sklearn.metrics` scorer.
298298
299299
Parameters
300300
----------

mne/decoding/search_light.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@ class SlidingEstimator(BaseEstimator, TransformerMixin):
3333
3434
Attributes
3535
----------
36-
``estimators_`` : array-like, shape (n_tasks,)
36+
estimators_ : array-like, shape (n_tasks,)
3737
List of fitted scikit-learn estimators (one per task).
3838
"""
3939

mne/decoding/transformer.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -233,7 +233,7 @@ class Vectorizer(TransformerMixin):
233233
234234
Attributes
235235
----------
236-
``features_shape_`` : tuple
236+
features_shape_ : tuple
237237
Stores the original shape of data.
238238
"""
239239

mne/io/base.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1557,7 +1557,7 @@ def crop(self, tmin=0.0, tmax=None):
15571557
last_samp are set accordingly.
15581558
15591559
Thus function operates in-place on the instance.
1560-
Use :meth:`mne.Raw.copy` if operation on a copy is desired.
1560+
Use :meth:`mne.io.Raw.copy` if operation on a copy is desired.
15611561
15621562
Parameters
15631563
----------

mne/preprocessing/ica.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -206,23 +206,23 @@ class ICA(ContainsMixin):
206206
ch_names : list-like
207207
Channel names resulting from initial picking.
208208
The number of components used for ICA decomposition.
209-
``n_components_`` : int
209+
n_components_ : int
210210
If fit, the actual number of components used for ICA decomposition.
211211
n_pca_components : int
212212
See above.
213213
max_pca_components : int
214214
The number of components used for PCA dimensionality reduction.
215215
verbose : bool, str, int, or None
216216
See above.
217-
``pca_components_`` : ndarray
217+
pca_components_ : ndarray
218218
If fit, the PCA components
219-
``pca_mean_`` : ndarray
219+
pca_mean_ : ndarray
220220
If fit, the mean vector used to center the data before doing the PCA.
221-
``pca_explained_variance_`` : ndarray
221+
pca_explained_variance_ : ndarray
222222
If fit, the variance explained by each PCA component
223-
``mixing_matrix_`` : ndarray
223+
mixing_matrix_ : ndarray
224224
If fit, the mixing matrix to restore observed data, else None.
225-
``unmixing_matrix_`` : ndarray
225+
unmixing_matrix_ : ndarray
226226
If fit, the matrix to unmix observed data, else None.
227227
exclude : list
228228
List of sources indices to exclude, i.e. artifact components identified
@@ -234,9 +234,9 @@ class ICA(ContainsMixin):
234234
again. To dump this 'artifact memory' say: ica.exclude = []
235235
info : None | instance of Info
236236
The measurement info copied from the object fitted.
237-
``n_samples_`` : int
237+
n_samples_ : int
238238
the number of samples used on fit.
239-
``labels_`` : dict
239+
labels_ : dict
240240
A dictionary of independent component indices, grouped by types of
241241
independent components. This attribute is set by some of the artifact
242242
detection functions.

mne/preprocessing/xdawn.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -364,17 +364,17 @@ class Xdawn(_XdawnTransformer):
364364
365365
Attributes
366366
----------
367-
``filters_`` : dict of ndarray
367+
filters_ : dict of ndarray
368368
If fit, the Xdawn components used to decompose the data for each event
369369
type, else empty.
370-
``patterns_`` : dict of ndarray
370+
patterns_ : dict of ndarray
371371
If fit, the Xdawn patterns used to restore the signals for each event
372372
type, else empty.
373-
``evokeds_`` : dict of evoked instance
373+
evokeds_ : dict of evoked instance
374374
If fit, the evoked response for each event type.
375-
``event_id_`` : dict of event id
375+
event_id_ : dict of event id
376376
The event id.
377-
``correct_overlap_``: bool
377+
correct_overlap_ : bool
378378
Whether overlap correction was applied.
379379
380380
Notes

mne/utils.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -683,7 +683,7 @@ def _update_doc(self, olddoc):
683683
if self.extra:
684684
newdoc = "%s: %s" % (newdoc, self.extra)
685685
if olddoc:
686-
newdoc = "%s\n\n%s" % (newdoc, olddoc)
686+
newdoc = "%s\n\n %s" % (newdoc, olddoc)
687687
return newdoc
688688

689689

0 commit comments

Comments
 (0)